Hans-Joachim Zillmer

Der Energie-Irrtum

Warum Erdgas und Erdöl unerschöpflich sind

Inhalt

1	Massenhaft Kohlenstoff und Methan	7
	Dinosaurier und weiche Steinkohle 7 · Und plötzlich geht es abwärts 14 · Massenhaft Methanhydrat 19 · Schockgefrorene Mammuts 26 · Ausschließlich biologisch 30 · Methan im Sonnensystem 32 · Anorganische Herkunft 44 · Methan-Vulkane und Treibhausklima 47	
2	Umformung der Landschaft	53
	Seismische Fehldiagnosen 53 · Rätselhafte Schlammvulkane 61 · Von Pocken und Pingos 69 · Fehlinterpretation Drumlin 75 · Erdbebenlöcher und Erdverflüssigung 80 · Plötzlich und unerwartet 83	
3	Das elektrisches Sonnensystem	89
	Mondbeben 89 · Der ganz andere Merkur 95 · Mythos Schmutziger Schneeball 103 · Schwarze Kerne 105 · Elektrische Gasentladungen 109 · Das Rätsel Leuchtkraft 115 · Kalte Kometen 119 · Die kalte Sonne 122 · Elektrische Gewitter 125 · Kobolde und Elfen 137 · Phänomen Kugelblitz 142 · Stromfluss in der Erde 144 · Strukturbildung der Erdkruste 151	

4 Die Erde wird gespeist
Die Neutralkugelschale der Erde 157 · Solare Energieversorgung 163 · Expansionstempo 174 · Elektrische Wechselwirkung 180
5 Chemische Energie und das Leben
Nur teilweise aufgeschmolzen 185 · Überraschende Explosion 195 · Extremer Ausbruch 200 · Unterirdisches Leben 212 · Überholte Geologie- Lehrbücher 231 · Verschleimte Tiefe 239
6 Die Gasquellen in der Tiefe
Alte Überzeugungen 245 · Helium mit Methan 251 · Karbonat-Zement 256 · Kein Öl in Arabien 260 · Zu heiß? 274 · Kohle über Erdöl 280 · Ausnahme Torf und Braunkohle 286 · Strahlende Steinkohle 301 · Todesfalle Asphaltgruben 304 · Raus aus der Sackgasse 307
Zitierte Literatur
Register 328

Massenhaft Kohlenstoff und Methan

Falsche Dogmen blockieren die Entwicklung der menschlichen Gesellschaft. Die Menschheit steckt in einer Sackgasse, und nur ein wahres Weltbild kann sie noch retten! Die Energie wird immer teurer, weil angeblich die Vorräte als fossil angesehener Brennstoffe demnächst zur Neige gehen. Der dramatische Preisanstieg der fossilen Brennstoffe führt zu Verschiebungen im Reichtum der Nationen, und es werden Kriege geführt, um den Zugang zu den Ölfeldern zu gewährleisten. All dies resultiert aus der Voraussage einer Verknappung von »fossilen« Energieträgern. Jedoch haben Raumsonden-Daten aus den letzten Jahren bewiesen, dass Kohlenwasserstoffe wie Methan und Ethan in unserem Sonnensystem massenhaft vorkommen. Diese entstanden aber ohne biologische Prozesse. Trotzdem werden Kohlenwasserstoffe auf der Erde noch immer als rein biologische Produkte angesehen.

Dinosaurier und weiche Steinkohle

In meinen bisherigen Büchern wurden Versteinerungsprozesse kontrovers diskutiert. Diese können sich nur in relativ kurzen Zeiträumen, aber nicht in Millionen von Jahren vollziehen, da biologisches Material während einer langsamen Konservierungsphase schon lange zerfallen wäre, falls kein absoluter Luftabschluss vorhanden war. Derartige Versteinerungen müssen schnell vor sich gehen, ansonsten könnte es zum Beispiel keine versteinerten Eier mit komplett erhaltenen, unverrotteten Embryos im Inneren oder aber versteinerte Kothaufen, sogenannte Koprolithe, geben – ausführlich diskutiert in meinem Buch »Irrtümer der Erdgeschichte«. Sehen wir uns die Fossilien in der Steinkohle an. Im Allgemeinen stellen die in Steinkohle enthaltenen Fossilien »Infu-

sionsfossilien« dar. Dies bedeutet, dass die Struktur von einem Organismus erhalten geblieben ist, die Substanz aber weitgehend durch Feststoffe ersetzt wurde, die als Flüssigkeiten oder Gase in die Struktur eingedrungen sein müssen. Im Prinzip besteht die Fossilie dann zu etwa 90 Prozent aus Kohlenstoff – wie die Steinkohle selbst. Das derart erhaltene Fossil kann strukturell fast vollkommen sein, kaum zusammengepresst, und man erkennt manchmal unter dem Mikroskop noch immer deutlich feine Einzelheiten, sogar bis in die Zellstruktur hinein. Trotzdem ist diese Struktur von demselben Kohlenkonzentrat ausgefüllt wie das die Fossilie umgebende Material, soweit man dies erkennen kann.

Der deutsche Botaniker Henry Potonié (1905) schloss aus fossil erhaltenen höheren Pflanzen auf die biologische Herkunft der Steinkohle, da »sofort ohne weiteres und ohne besondere Präparation die pflanzlichen Zellen zu erkennen« sind (ebd., S. 9). Dies war eine Kehrtwende, da Wissenschaftler zuvor glaubten, »die Steinkohle sei ein Mineral in dem Sinne etwa wie Quarz, Feldspat, Glimmer und dergleichen; also auch ebenso entstanden« (ebd., S. 8).

Falls aber Steinkohle ebenso wie Torf und Braunkohle entstanden sein soll (ebd., S. 10), ergibt sich ein Kohle-Paradoxon. Warum bleibt ein einzelnes fein gegliedertes Blatt eines Baumes innerhalb einer kohligen Masse erhalten, während von den restlichen Blättern kein einziges übrig bleibt? Warum ist nichts vom kompakten Stamm des Baumes erhalten geblieben? In struktureller Hinsicht unterscheidet sich Steinkohle deshalb scharf von Torf und Braunkohle, die sicherlich aus organischen Resten entstanden sind.

Wie kann ein derartiges Steinkohlenfossil entstehen? Da die fein gegliederte Struktur erhalten blieb, muss die heutzutage homogene Steinkohle einmal flüssig oder gasförmig gewesen sein! Allgemein gesehen sollte ein kohlenstoff- oder aber silizium- bzw. mineralhaltiges Fluid die organische Struktur durch eine Art Infusionsprozess ausfüllen und auf diese Weise versteinern. Dieser Prozess muss schnell vonstatten gegangen sein, da ansonsten ein Blatt, Baum oder auch Ei vorher verrottet wäre.

Wichtig ist festzustellen, dass auch versteinerte Fußspuren nur in weichen, matschartigen Schichten erzeugt werden konnten, nicht in fes-

Abb. 1: Kohle-Trittsiegel. In der *Castle Gate Mine* befinden sich dreizehige Trittsiegel von Dinosauriern an der Decke der Flöze. Dort, wo die Saurier einsanken, können Abgüsse mit dem Trittsiegel aus der Decke des Flözes entfernt werden, wie das rechte Bild zeigt.

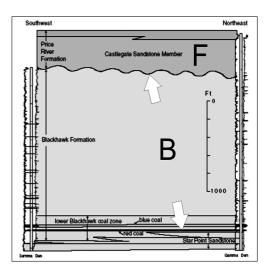
tem Gestein, in dem sich diese heutzutage befinden. Dieser weiche, die Fußspuren beinhaltende Matsch muss dann, wie eine Gehwegplatte mit Hand- und Fußabdrücken von Prominenten in Beverly Hills, schnell ausgehärtet sein, da die Abdrücke sonst durch Erosionseinflüsse schnell zerstört worden wären.

Versteinerte Trittsiegel (Fußspuren) von Dinosauriern findet man seltsamerweise an der Decke vieler Kohlenminen im Westen der USA – ein weithin unbekanntes Phänomen. Allein in Utah gibt es mehrere Kohlenminen in der Nähe von Helper und Price, in denen Trittsiegel gefunden wurden. In vier Minen entdeckte man sogar jeweils mehrere tausend Trittsiegel, die teils kreuz und quer verlaufen, übereinander liegen und deshalb teils andere verdecken (u. a. Balsley/Parker, 1983, S. 279).

Auch in anderen Kohlenminen wurden Trittsiegel von Dinosauriern häufig dokumentiert, u. a. in der *Castle Gate Mine* im Gebiet der Rocky Mountains (Peterson, 1924), in Wyoming, im westlichen Teil Colorados, in Utah nahe Rock Springs und in New Mexico nahe Cuba (Gillette/Lockley, 1989). Die sehr unterschiedlich großen Trittsiegel stammen sowohl von Fleisch fressenden, offiziell als zweifüßig angesehenen Theropoden, als auch von Pflanzen fressenden vierfüßigen Sauropoden, die sich gemeinsam in ein und *demselben* Gebiet bewegten. Seltener sind einzelne isolierte Trittsiegel dokumentiert, die teils unwahr-

scheinlich groß sind. Das größte mir bekannte misst eine Länge von 1,36 Metern, aber man hat mir vor Ort sogar von noch größeren berichtet. Interessant sind aber auch 50 etwa 15 Zentimeter lange Trittsiegel von einem großen Vogel, die in einem etwa fünf Quadratmeter großen Bereich entdeckt wurden (Gillette/Lockley, 1989).

Die zuvor beschriebenen Kohlenlager sollen insgesamt von Wyoming über Utah und Colorado bis hin nach New Mexico zu den seltenen, weil geologisch jungen Steinkohlen-Vorkommen (Blackhawk-Formation) gehören, die aus der Kreidezeit stammen. »Normalerweise« soll Steinkohle im Karbon-Zeitalter entstanden sein, lange *vor* Beginn der Dinosaurier-Ära.


Da Steinkohle nach konventioneller Lesart definitiv aus biologischem Material entstanden sein soll, ist es verwunderlich, dass manche Kohlen sehr wenige Fossilien oder sogar *überhaupt keine* enthalten. Fossilfreie Kohle findet man zum Beispiel in Alaska. Überall dort, wo es mehr Fossilien in der Steinkohle gibt, sind große Schwankungen in der Menge zu verzeichnen. Auch die Verteilung von Fossilien in den Flözen selbst ist nicht homogen, sondern innerhalb des Höhenprofils sind Fossilien selten im Inneren, jedoch häufig an der Decke des Flözes zu finden. Dort, sozusagen *auf* dem Flöz, sind ja auch die Trittsiegel von Dinosauriern und vogelartigen Tieren vorhanden.

Diese Tiere liefen damals auf einer dünnen Schicht aus Torf und Sand eines Frischwassersumpfes, darunter befand sich die noch weiche, in Bildung befindliche Kohle. In diese sanken die Tiere bis zu 30 Zentimeter tief ein. Dabei wurden die Füße *senkrecht* wieder herausgezogen, wie die Form der Trittsiegel belegt. Es gibt längere Pfade von Trittsiegeln, wo der Dinosaurier nur bei einem von mehreren Tritten einsank. Zurück blieben Vertiefungen in der Kohle als eine Art Abguss. Diese bestehen größtenteils aus sandigen Sedimenten, die durch fließendes Wasser in die entstandenen Vertiefungen eingeschlämmt wurden. Deshalb fallen diese Trittsiegel auch leicht von der Decke abgebauter Flöze herab (Abb. 2).

Entstanden nun die Steinkohlenflöze einheitlich in Form eines sich sehr langsam bildenden, mit der Zeit immer mächtiger werdenden Sumpfes? Oder bildeten sie sich relativ schnell und einheitlich? In der Kenilworth-Kohlenmine in Utah fand man an der Decke der Kohlenschicht versteinerte Fußabdrücke, die ein kleines Tier hinterlassen hatte. Genau dieselben fand man aber auch am Boden des Flözes (Gillette/Lockley, 1989). Diese Spezies existierte also zu Beginn und am Ende der Bildungsdauer dieser Kohlenschicht.

Damit kommen wir zu der kaum bekannten Tatsache, dass man Trittsiegel von Dinosauriern nicht nur an der Decke, sondern auch am *Boden* von Steinkohlenflözen findet. Diese Trittsiegel befinden sich dort unten aber gar nicht *im* Flöz selbst, sondern an der Oberfläche der unmittelbar unter der Kohlenschicht liegenden Sedimentschicht, und die Kohle füllt diese Trittsiegel aus. Die Dinosaurier liefen also auf einer damals noch weichen, meist aus Sand bestehenden, allerdings mit kohlenartigen Bestandteilen bzw. Kohlenstoff durchmengten Sedimentschicht. Diese Schichten sind meist nach oben hin in das Kohlenflöz in Form von Buckeln aufgewölbt. Dies zeigt meines Erachtens, dass der Druck nicht von oben, sondern von unten kam, verursacht durch ein *aufsteigendes* Fluidum.

Abb. 2: Homogene Kohle. Dieser Schnitt durch einen südlichen Bereich des Wasatch-Plateaus in Utah zeigt eine homogene Blackhawk-Steinkohlenschicht (B) mit einer Mächtigkeit von über 400 Metern. Darüber befindet sich der aus fluvialen Sedimenten (F) bestehende Sandstein des Price River, auf dessen ehemaligem Flussgrund bzw. auf der darunter befindlichen Kohlenschicht die Dinosaurier liefen und darin Spuren hinterließen, ebenso wie in

der Sandsteinschicht unmittelbar unterhalb der Blackhawk-Steinkohlenschicht (Pfeile). Innerhalb der homogenen Kohlenschicht (B) wurden keine Trittsiegel entdeckt.

Register

abiogen 31–44, 99, 186, 189,	Chondrite (Meteoritenart) 32, 119
192–195, 247–252, 255, 256, 259,	Cyanwasserstoff 196, 200
263, 266, 270, 272–274, 281, 288,	
290, 296, 298, 300, 309, 316	D"-Schicht 169-171
Acetylen (Ethin) 196	Dinosaurier 2, 3, 7, 9, 10, 11–13,
Artenverwandlung 221, 243	177–179, 181, 214, 279, 283, 286,
Asphalt (natürlich) 6, 62, 268, 274,	300, 302, 304, 306, 307, 327
283, 304–306	auf allen Kontinenten 177
-gruben 6, 304, 305	Aussterben der 178, 214
Hannover (Wietze) 304	-Handbuch 2, 177–179, 327
-Sümpfe 305, 306	-Paläogeografie 179
Ätna (Vulkan) 58, 59, 237, 247,	Trittsiegel in Kohle 9–13, 279,
268–270	273, 279, 283, 300, 302, 304, 306,
Ausgasung	307
Enceladus 72, 73	
Iapetus 194	Edelgas 32, 45, 91, 113, 160, 164,
Komet 102, 106, 115	252, 253, 264, 291
Mars 42, 97	Einschlagkrater 24, 36, 39, 42, 73,
Mond 4, 70, 90, 91, 94	74, 97, 101, 115, 194, 198
	Iapetus 194
Bindungsenergie 191	Mars 36, 39, 42
Blackhawk-Formation 10, 11	Merkur 101
Bodenverflüssigung 75, 78, 79, 81,	Pingos, Verwechslung 73, 74
84, 269	Wild 2 (Komet) 115, 198
Braunkohle 6, 8, 280, 281, 286, 287,	Eisvulkan (s. Pingo) 72, 79
288, 302	Elfen (Entladung) 5, 137, 138,
	Enceladus, Saturn-Mond 72, 73
Caldera (Einsturzkrater) 43, 61, 67	Entladungsröhre 112, 114, 120, 122,
Caloris-Becken (Merkur) 95–97,	124, 127
100, 101	Erdbeben 62, 63
Castle Gate Mine (Trittsiegel) 9	-brunnen 79, 80, 83
Chattanooga-Schiefer (Devon) 304	Erdwachs 287

Ethan 7, 31–33, 40, 186, 194, 196,	Gas
199, 288, 309	-ausblasen 268
abiogen 7, 32, 186, 194, 196, 199,	Ausgasung Enceladus 72, 73
309	Ausgasung Iapetus 194
-Eis 186	Ausgasung Komet 102, 106, 115
auf Hale-Bopp 186	Ausgasung Mond 4, 70, 90, 91, 94
auf Tempel 1 196, 199	Ausgasung Mars 42, 97
auf Titan 186	-ausstoß, untermeerisch 17, 18,
Ethin (Acetylen) 196	21, 70, 238, 319
Evolution(s) 2, 87, 209–211, 212,	-blase(n) 15, 49, 61, 68
215, 216, 218–220, 223, 224–227,	-druck 28, 29, 41, 66, 113, 120
230, 236, 280, 281, 304, 315, 318,	-durchlässiger Ozeanboden 21
321–325, 327	-entladung 5, 113, 137, 147, 199,
chemische 209, 224	204, 238, 270
Makro- 218-220, 223-226, 230, 281	-entladungsröhre 112, 114, 120,
Mikro- 219, 230	122, 124, 127
-Theorie 87, 219, 225, 236	-entspannung 28
EvolutionsLüge (Buch) 77, 219, 223,	-eruption 30, 33, 82, 83, 147, 149
327	-Explosion 19, 57, 69, 74, 82, 238
Expansion 6, 21, 30, 173, 174, 177,	-flammen 15, 53, 62, 148, 239
231, 318, 326	-fontänen(artig) 16, 18, 20, 42, 73
der Erde 6, 30, 174, 176, 177, 231,	-Geysire 43
318, 326	Hochdruckgase 278
Gase 21	-jets 115, 198
Komet (Koma) 101	Klimagas 33, 34, 68, 309
Mond 173, 174	Krater 42, 69, 97, 173
Planeten 173	-planet 108, 164, 167
	-quelle(n) 4, 19, 233, 236, 239, 245
Fällungen, rhythmisch 152	-schweif 106
Fettkohlenschicht 284	-sickerung, Nordsee 265
Fossilien 7, 8, 10, 12, 178, 179, 210,	-strömung 60, 198, 238
211, 219, 221, 247, 284, 285	superkritisches 278
älteste 211	-volumen 28, 50, 60
in Steinkohle 7, 8, 10, 284, 285	-vulkan 75
Dinosaurier 179	-Wasser-Gemisch 16
Krokodile 178	-wolke 35, 199, 200
Mikro- 210, 211	Gashydrat 16, 18–21, 25, 323, 326
ohne Übergangsform 219, 221	Geodynamo 168
Fotosynthese 32, 34, 35, 99,	Geokondensator-Theorie 145
211–218, 293	Grubengas 153

Hasenkaute (fossiler Pingo) 74 -gehalt 46, 68 Helligkeitsausbruch (Komet) 104, -Geysir(e) 41, 42 200-202 -Kurve IPCC 308, 309 und Methan 49, 241, 242, 266 Holmes (17P/Holmes) 200-204 -Verlauf 309 Vulkane, aus 58, 59, 65, 68 Iapetus, Saturn-Mond 194 Inkohlungsprozess 13, 280, 281, 284, Klimaerwärmung 19, 51, 139, 161 285, 287, 300, 303, 304 Klimarat (IPCC) 308 IPCC (Klimarat) 308 Kobolde (Entladung) 5, 137, 138 Kohle-Paradoxon 8 Jet Propulsion Laboratory 78 Krokodil(e) 19, 47, 178 JFK International Airport Arktis, in 47 Joule-Thomson-Effekt 28, 29, 72, transatlantisch 178 79,80 La Brea-Teergruben 304-306, 321 Kalzit (Kalkspat) 99, 100, Liesegang-Ringe 151, 152, 208, 320 257-259 Luftabschluss 7, 12,13, 286 Karbonat(e) 6, 45, 46, 50, 68, 96–100, 120, 195, 210, 256, 257–260, 263, Makro-Evolution 218–220, 223, 264, 273, 284, 285, 299 224-226, 230, 281 auf Merkur 96, 97 Mars 4, 31, 34–41, 64, 102, 174, 176, Hydrogen- 96 181, 182, 186, 212, 215–217, 315, -Isotopenverhältnis 257 322, 325 Kalzium- (Magnesium-) 99, 100, -atmosphäre 36 f. 299 -ausgasung 42, 102, 173 -Lava 85 -bahn 186 Meeres- 257, 258 chemisches Gleichgewicht 216 Natrium- 50, 96 Fotosynthese auf 215, 216 -Zement 6, 97, 98, 256, 258, 259 -landungen 181 Karbonatit-Vulkan 85 Leben auf 38, 216 Kenilworth-Kohlenmine (Utah) 11 -Meteorit 97 Kohlendioxid Methan auf 31, 33, 36, 186, 216 anorganisch (abiogen) 46, 309 Polkappen 41 -Atmosphäre 45, 46, 51, 100, 257, -schlot 36 263, 264, 308, 309 36, 37, 42, 173, 181, 182, -sonde aus Ozeanen 46, 48, 68 215 Wasser auf 215 auf der Erde 89, 90 auf Komet 196, 199 Methan-Vulkan 5, 47, 49, 68, 72 auf dem Mars 36, 40, 42 Moor 12, 281-284, 286, 287 -Blasen 16 autochthon gewachsen 282

-Theorie (Potonié) 8, 281–284, rhythmische Bänderungen 151, 320 287, 323 Wald- 282 Gesteinsfolgen 145 Mount St. Helens 12, 85, 86 Fällungen 152 Mineralgefüge 152, 230 New-Madrid-Erdbeben 81-83, 316 Neutralkugelschale 6, 125, 136, 143, San-Andreas-Verwerfung 157–160, 164, 174, 180, 181, 187, Schlacht um Los Angeles Schiefer 247, 282–287, 304, 305 197, 275 der Erde 6, 136, 15–160, 174, 181, Chattanooga-Schiefer 304 187, 275 -Kohle 282 Ölschiefer 286, 305 Komet 197 Kugelblitz 143 -ton 282 Sonne, der 125, 180 -ung (rhythmische Fällung) 152 Ochsen, schockgefroren 26 Schneezeit-Theorie 86 Ölschiefer 286, 305 Selbstorganisation 173, 189–192, 208, 211, 216, 218, 222, 223, 228, Palmen (unter Kohle) 12 230, 240, 243, 320 Pangaea(-Erde) 176, 177, 179 Bändergefüge 208 Potonié, Henry 8, 281–284, 287, 323 Stromatolithen 211 Pingo(s) 5, 69–75 Entstehung Leben 222, 223, 228, -Eiskörper 71 230, 240, 243 Eisvulkan 73, 79 Spitzbergen 20, 47, 70, 265 Methanhydrat 20 -Geysire 37, 64 -Hohlraum 72 Öl bei 265 -Kratersee 74 Stammzellen 221, 222 Plasmaphysik 116, 126, 143, 307, Steinkohlen(n) 6, 7, 8, 10–14, 279, 316, 319 280, 281, 283, 286, 287, 300–304, Plattentektonik 21, 22, 30, 56, 158, 306, 320, 323 Blackhawk-Formation 10 176, 178, 237, 266, 316 Pockennarben (Pockmarks) 16, 17, -fossil 8 18, 48, 69, 70, 72, 77, 102, 194, 314, -flöz 10, 11, 12, 13 -gebiet, westfälisch 320 318, 326 Erdenmond 70 Gewässer darüber 279 Iapetus 194 Holzkohle 13 Mars 97 Kohle über Erdöl 280, 300, 306 Nordsee 18 kreidezeitlich 13 Schwarzes Meer 48 -lager 13, 31, 281, 300 Propan (abiogen) 33, 309 Pflanzen darin zu wenig 281

radioaktiv strahlende 301	-gürtel 63
weich (Kohle) 283	-hitze 269
Subduktion(szone) 21, 23, 63, 169,	kalte 65
170, 270, 297	-kegel 73
Sumpfgas 287	Klima kälter 161
Sumpflandschaft 82	Klimadiskussion 65
•	Lava- 50, 58, 61, 65, 66, 68, 237,
Tempel 1 (Komet) 195–199, 206,	266, 284
313, 321	Lok-Botan (Baku) 66
Impaktgaswolke 198	Methan- 5, 47, 49, 68–74, 237
Impaktor 196	Mond 90
Temperaturen auf 206	Mount St. Helens 12, 85, 86
Teufelskaute (fossiler Pingo) 73, 74	Sand- 82
Titan (Saturn-Mond) 33, 43, 44,	Schiwelutsch 59
186, 324	-schlot 60, 61, 237
Ethan-See 186	Stromboli 270
Trittsiegel 10–13, 273, 279, 283, 302,	Super- 314
304, 306, 307	Tambora 59
Torf 6, 8, 10, 280, 281, 283–288	Tiefsee- 242
-ablagerung 283	Tuff 153
-moor 12, 283–285, 287, 302	untermeerisch 22, 60, 217, 218,
-schicht 283	242
-vorkommen, groß 288	Vulcano 270
Tsunami (Sumatra) 50, 148, 310	Wasser 58
Tunguska-Ereignis 24, 25, 30	Wasserdampf 58, 59, 65, 237
-	Yellowstone 67, 158, 276
Vulkan(e)	Victoria-Krater (Mars) 36, 37, 39
-asche 153	Vulkanologie 176
-ausbruch 45, 58, 60–67, 86, 89,	
109, 127, 145, 147, 153, 154, 160,	Wasatch-Plateau (Utah) 11
161, 173, 237, 248	Wasserdampf 35–37, 58, 59, 65, 72,
Blitze 145–147, 160, 248	73, 89, 91, 92, 190, 197, 198, 200,
Cerro Negro (Nicaragua) 147	237
Einsturzkrater 43	Enceladus, auf 72, 73
Explosion 60	Erdenmond, auf 89, 91, 92
-insel 50	-wolken 59
Feuergarben 66	Impakt, bei 197
Flammensäule 248	Tempel 1, bei 198, 200
Fuego (Guatemala) 60	Vulkan, aus 58, 59, 65, 237
Gas(e) 60, 75, 91	Witch Hole (Schiffswrack in) 17
	,