
﻿

● 15

Pay now or Pay Later . 293

Indispensable Programmers . 293

Final Curtain . 294

Appendix A . 295

Appendix B – Parts . 301

Index . 302

FreeRTOS with Arduino UK 200525.indd 15FreeRTOS with Arduino UK 200525.indd 15 08-06-20 17:0308-06-20 17:03

FreeRTOS for ESP32-Arduino

● 16

FreeRTOS with Arduino UK 200525.indd 16FreeRTOS with Arduino UK 200525.indd 16 08-06-20 17:0308-06-20 17:03

● 17

Chapter 1 • Introduction

Chapter 1 • Introduction

In recent times, the development of System on a Chip (Soc) has lead to the popular use of
microcontrollers. Many products sold today will have one or more microcontrollers found
inside. Their small size, low cost, and increasing capabilities make them very compelling.
Beginning in 2005, the Arduino project made microcontrollers more accessible to students
by simplifying the programming environment.[1] Since then, hobbyists and engineers alike
have exploited its capabilities.

More recently, FreeRTOS within the Arduino software framework has been introduced on
some platforms. Why is FreeRTOS beneficial? What problems does it solve? How can FreeR-
TOS be leveraged by your project? These are some of the questions answered in this book
with demonstrations.

Not all Arduino hardware platforms support FreeRTOS. The RTOS (Real-Time Operating
System) component requires additional resources like SRAM (Static Random Access Mem-
ory) and a stack for each task. Consequently, very small microcontrollers won’t support
it. For larger microcontrollers that do, a rich API (Application Programming Interface) is
available to make writing your application easier and more powerful.

The Need for RTOS
The general approach used on small AVR (ATmel) devices is to poll for events and respond.
A program might test for button presses, incoming serial data, take temperature readings,
and then at the right time, produce a result like closing relays or sending serial data. That
polling approach works well enough for small projects.

As the number of input events and conditions increases, the complexity tends to multiply.
Managing events by polling requires an ever-increasing management of state. Well de-
signed programs may, in fact, implement a formal "state machine" to organize this com-
plexity.

If instead, the same program was split into independently executing subprograms, the
problem becomes much simpler to manage. Within FreeRTOS, these are known as tasks.
The button press task could examine the GPIO input and debounce it. It becomes a sim-
ple loop of its own, producing an event only when the debounced result indicates that the
button was pressed. Likewise, the serial input task operating independently can loop while
receiving characters until an end of line character was encountered. Once the serial data
was decoded, the interpreted command could signal an event. Finally, the master task, re-
ceiving both the button press and command events from other tasks can trigger an action
event (like the closing of relays). In this manner, a complex application breaks down into
smaller tasks, with each task focusing on a subset of the problem.

How are tasks implemented? In the early years of computing, mainframes could only run
one program at a time. This was an expensive way to use a computer that occupied the
size of a room. Eventually, operating systems emerged, with names like the Time Sharing
Option (TSO), which made it possible to share that resource with several users (all running

FreeRTOS with Arduino UK 200525.indd 17FreeRTOS with Arduino UK 200525.indd 17 08-06-20 17:0308-06-20 17:03

FreeRTOS for ESP32-Arduino

● 18

different programs). These early systems gave the illusion of running multiple programs
at the same time by using a trick: after the current time slice was used up, the program’s
registers were saved, and another program’s registers were reloaded, to resume the sus-
pended program. Performed many times per second, the illusion of multiple programs run-
ning at once was complete. This is known as concurrent execution since only one program
is running at any one instant.

A similar process happens today on microcontrollers using an RTOS. When a task starts,
the scheduler uses a hardware timer. Later, when the hardware timer causes an interrupt,
the scheduler suspends the current task and looks for another task to resume. The cho-
sen task’s registers are restored, and the new (previously suspended) task resumes. This
concurrent execution is also known as preemptive scheduling because one task preempts
another when the hardware timer interrupts.

Preemptive scheduling is perhaps the main reason for using FreeRTOS in today’s projects.
Preemptive scheduling permits concurrent execution of tasks, allowing the application de-
signer to subdivide complex applications without having to plan the scheduling. Each com-
ponent task runs independently while contributing to the overall solution.

When there are independent tasks, new issues arise. How does a task safely communicate
an event to another task? How do you synchronize? How do interrupts fit into the frame-
work? The purpose of this book is to demonstrate how FreeRTOS solves these multitasking
related problems.

FreeRTOS Engineering
It would be easy to underestimate the design elegance of FreeRTOS. I believe that some
hobbyists have done as much in forums. Detractors talk about the greater need for effi-
ciency, less memory, and how they could easily implement their routines instead. While
this may be true for trivial projects, I believe they have greatly underestimated the scope
of larger efforts.

It is fairly trivial to design a queue with a critical section to guarantee that one of several
tasks receives an item atomically. But when you factor in task priorities, for example, the
job becomes more difficult. FreeRTOS guarantees that the highest priority task will receive
that first item queued. Further, if there are multiple tasks at the same priority, the first
task to wait on the queue will get the added item. Strict ordering is baked into the design
of FreeRTOS.

The mutex is another example of a keen FreeRTOS design. When a high priority task at-
tempts to lock a mutex that is held by a lower priority task, the later’s priority is increased
temporarily so that the lock can be released earlier, to prevent deadlocks. Once released,
the task that was holding the mutex returns to its original priority. These are features that
the casual user takes for granted.

The efficiency argument is rarely the most important consideration. Imagine your appli-
cation written for one flavour of RTOS and then in another. Would the end-user be able to

FreeRTOS with Arduino UK 200525.indd 18FreeRTOS with Arduino UK 200525.indd 18 08-06-20 17:0308-06-20 17:03

● 19

Chapter 1 • Introduction

tell the difference? In many cases, it would require an oscilloscope measurement to note
a difference.

FreeRTOS is one of several implementations that are available today. However, it’s free
status and its first-class design and validation make it an excellent RTOS to study and use.
FreeRTOS permits you to focus on your application rather than to recreate and validate a
home-baked RTOS of your own.

Hardware
To demonstrate the use of the FreeRTOS API, it is useful to concentrate on one hardware
platform. This eases the requirements for the demonstration programs. For this reason, the
Espressif ESP32 is used throughout this book, which can be purchased at a modest cost.
These devices have enough SRAM to support multiple tasks and have the facilities neces-
sary to support preemptive scheduling. Even more exciting, is the fact that these devices
can also support WiFi and TCP/IP networking for advanced projects.

Dev Boards
While almost any ESP32 module could be used, the reader is encouraged to use the "dev
board" variety for this book. The non-dev board module requires a TTL to serial device to
program its flash memory and communicate with. Be aware that many TTL to serial devices
are 5 volts only. To prevent permanent damage, these should not be used with the 3.3 volt
ESP32. TTL to serial devices can be purchased, which do support 3.3 volts, usually with a
jumper setting.

The dev boards are much easier to use because they include a USB to serial chip onboard.
They often use the chip types CP2102, CP2104, or CH340. Dev boards will have a USB
connector, which only requires a USB cable to plug into your desktop. They also provide
the necessary 5 volts to 3.3-volt regulator to power your ESP32. GPIO 0 is sometimes
automatically grounded by the dev board, which is required to start the programming. The
built-in USB to serial interface makes programming the device a snap and permits easy
display of debugging information in the Arduino Serial Monitor. Dev boards also provide
easy GPIO access with appropriate labels and are breadboard friendly (when the header
strips are added). The little extra spent on the dev board is well worth the convenience and
the time it will save you.

One recommended unit is the ESP32 Lolin with OLED because it includes the OLED display.
It is priced a little higher because of the display but it can be very useful for end user ap-
plications. Most ESP32 devices are dual-core (two CPUs), and the demonstrations in this
book assume as much.

If you are determined to use the nondev board variety, perhaps because you want to
use the ESP32CAM type of board, then the choice of USB to TTL serial converter might
be important. While the FT232RL eBay units offer a 3.3-volt option, I found that they are
problematic for MacOS (likely not for Windows). If the unit is unplugged or jiggled while the
device is in use, you lose access to the device, and replugging the USB cable doesn’t help.
Thus it requires the pain of rebooting and is, therefore, best avoided.

FreeRTOS with Arduino UK 200525.indd 19FreeRTOS with Arduino UK 200525.indd 19 08-06-20 17:0308-06-20 17:03

