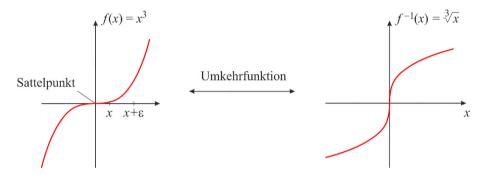
Aufgabe 11.* Streng monoton steigende Funktionen

$$f(x+\varepsilon) > f(x) \quad \text{mit} \quad \varepsilon > 0$$
 (15)

besitzen eine Umkehrfunktion. Im Falle der kubischen Parabel x^3 ist dies die Kubikwurzel:

$$\sqrt[3]{x} = x^{\frac{1}{3}} = \begin{cases} -\sqrt[3]{-x} & \text{für } x < 0\\ \sqrt[3]{x} & \text{für } x \ge 0 \end{cases}$$
 (16)

Beweisen Sie, dass die kubische Parabel trotz Sattelpunkt streng monoton steigt.



Aufgabe 12. Durch Umkehrung der Potenz x^k mit $k \in \mathbb{N}^*$ erhält man die k-te Wurzel:

$$\sqrt[k]{x} = x^{\frac{1}{k}}$$
 mit $\begin{cases} x \in [0, \infty) & \text{für } k \text{ gerade} \\ x \in (-\infty, \infty) & \text{für } k \text{ ungerade} \end{cases}$ (17)

Geben Sie eine Begründung, warum beim Definitionsbereich eine Fallunterscheidung vorgenommen worden ist.

Aufgabe 13. Zu jedem der fünf Potenzgesetze (4) bis (8) existiert ein äquivalentes Wurzelgesetz. Beginnen Sie mit der Herleitung des Wurzelgesetzes für Wurzeln:

$$\sqrt[k]{\sqrt[n]{x}} = \sqrt[kn]{x} \tag{18}$$

Aufgabe 14. Die Verknüpfung von Potenzieren und Radizieren führt zu einer Potenz mit rationalem Exponenten (gekürzter Bruch mit Zähler $n \in \mathbb{Z}$ und Nenner $k \in \mathbb{N}^*$):

$$x^{\frac{n}{k}} = \sqrt[k]{x^n} = (\sqrt[k]{x})^n \quad \text{mit} \quad \begin{cases} x \in [0, \infty) & \text{für } k \text{ gerade} \\ x \in (-\infty, \infty) & \text{für } k \text{ ungerade} \end{cases}$$
 (19)

Die Formel wirft Fragen auf:

- a) Weshalb sollte der Exponent $\frac{n}{k}$ in gekürzter Form vorliegen? Erläutern Sie, wann das Kürzen relevant ist, und geben Sie ein Beispiel.
- b) Ist es egal, ob zuerst potenziert oder radiziert wird? Beweisen Sie, dass die Reihenfolge keine Rolle spielt.

8 I Beweisaufgaben

Aufgabe 15. Leiten Sie die restlichen Wurzelgesetze für $k, n \in \mathbb{N}^*$ her:

a) Produktregel bei gleichem Radikanden:

$$\sqrt[k]{x} \cdot \sqrt[n]{x} = \sqrt[kn]{x^{k+n}} \tag{20}$$

b) Produktregel bei gleichem Wurzelexponenten:

$$\sqrt[k]{x} \cdot \sqrt[k]{y} = \sqrt[k]{xy} \tag{21}$$

c) Quotientenregel bei gleichem Radikanden:

$$\frac{\sqrt[k]{x}}{\sqrt[n]{x}} = \sqrt[kn]{x^{n-k}} \tag{22}$$

d) Quotientenregel bei gleichem Wurzelexponenten:

$$\frac{\sqrt[k]{x}}{\sqrt[k]{y}} = \sqrt[k]{\frac{x}{y}} \tag{23}$$

Ausgangspunkt sind die Potenzgesetze mit natürlichen Exponenten (ohne null).

Aufgabe 16.* Im Rahmen der Aufgaben 9 und 10 wurde die Gültigkeit der Potenzgesetze (4) bis (8) auf ganzzahlige Exponenten $k, n \in \mathbb{Z}$ ausgeweitet. Die Wurzelgesetze (18) und (20) bis (23) gelten für natürliche Wurzelexponenten $k, n \in \mathbb{N}^*$. Beweisen Sie, dass die Potenzgesetze dann auch für rationale Exponenten $u, v \in \mathbb{Q}$ gültig sind:

a) Produktregel bei gleicher Basis:

$$x^u x^v = x^{u+v} \tag{24}$$

b) Produktregel bei gleichem Exponenten:

$$x^u y^u = (xy)^u \tag{25}$$

c) Potenzregel für Potenzen:

$$(x^u)^v = x^{uv} (26)$$

d) Quotientenregel bei gleicher Basis:

$$\frac{x^u}{x^v} = x^{u-v} \tag{27}$$

e) Quotientenregel bei gleichem Exponenten:

$$\frac{x^u}{y^u} = \left(\frac{x}{y}\right)^u \tag{28}$$

Unter welcher Voraussetzung dürfen negative Basen x, y < 0 benutzt werden?

Aufgabe 17* Bei einer Potenz x^u mit irrationalem Exponenten $u \in \mathbb{R} \setminus \mathbb{Q}$ muss die Basis positiv oder null sein: $x \geq 0$. Warum sind negative Zahlen verboten?

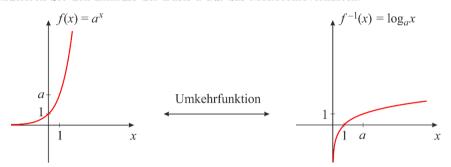
Aufgabe 18. Man begründe, dass die für rationale Exponenten hergeleiteten Potenzgesetze (24) bis (28) auch für reelle Exponenten $u, v \in \mathbb{R}$ (mit $x, y \ge 0$) benutzt werden dürfen.

1.3 Logarithmengesetze

Aufgabe 19. Durch Umkehrung der Exponentialfunktion erhält man die Logarithmusfunktion:

$$y = a^x \Leftrightarrow x = \log_a y \text{ mit } a > 0, a \neq 1$$
 (29)

Diskutieren Sie den Einfluss der Basis a auf das Monotonieverhalten.



Aufgabe 20. Zeigen Sie, dass das Logarithmengesetz

$$\log_a(xy) = \log_a x + \log_a y \tag{30}$$

äquivalent zum Potenzgesetz (24) ist.

Aufgabe 21. Leiten Sie die Logarithmenregel

$$\log_a x^c = c \log_a x \tag{31}$$

her, indem Sie die Äquivalenz zur Potenzregel (26) ausnutzen.

Aufgabe 22. Zeigen Sie, dass die als Basiswechselsatz bekannte Logarithmenregel

$$\log_a x = \frac{\log_b x}{\log_b a} \tag{32}$$

ebenfalls äquivalent zum Potenzgesetz (26) ist.

Aufgabe 23. Wegen $(31) \Leftrightarrow (26)$ und $(32) \Leftrightarrow (26)$ muss gelten: $(31) \Leftrightarrow (32)$. Verifizieren Sie die Äquivalenz der beiden Logarithmengesetze, ohne die Potenzregel anzuwenden.

1.4 Irrationalität der Wurzel aus 2

Aufgabe 24. Von Euklid stammt der sehr berühmte Beweis, dass die Wurzel aus 2 keine rationale Zahl sein kann. Als Vorbereitung auf die recht anspruchsvolle Beweisführung beweise man zunächst, dass das Quadrat einer geraden Zahl ebenfalls gerade ist.

Aufgabe 25. Es ist zu zeigen, dass man durch Quadrieren einer ungeraden Zahl immer eine ungerade Zahl erhält.

Aufgabe 26. Folgende Aussage ist zu beweisen: Wenn eine Quadratzahl m^2 gerade ist, dann muss auch die Zahl m gerade sein.

Aufgabe 27* Beweisen Sie, dass die Wurzel aus 2 irrational ist: $\sqrt{2} \notin \mathbb{Q}$.

10 I Beweisaufgaben

1.5 Primzahlen

Aufgabe 28.* Können Sie beweisen, dass es unendlich viele Primzahlen gibt?

Ein sehr berühmter Widerspruchsbeweis findet sich in den "Elementen" des Euklid.

Aufgabe 29. Das Produkt zweier natürlicher Zahlen ist gleich dem Produkt aus größtem gemeinsamem Teiler (ggT) und kleinstem gemeinsamem Vielfachen (kgV):

$$\operatorname{ggT}(k, n) \cdot \operatorname{kgV}(k, n) = k \cdot n \quad \text{mit} \quad k, n \in \mathbb{N}^*$$
 (33)

Beweisen Sie diesen Zusammenhang mittels Primfaktorzerlegung.

Aufgabe 30. Addiert man zwei periodische Funktionen f_1 und f_2 , dann ist die Periode von $f(t) = f_1(t) + f_2(t) = f(t+T)$ gleich dem kleinsten gemeinsamen Vielfachen der Ausgangsperioden: $T = \text{kgV}(T_1, T_2)$. Zum Beispiel: $\pi = \text{kgV}(\frac{\pi}{2}, \frac{\pi}{3})$.

Zeigen Sie, dass sich mithilfe der folgenden Gleichung das kleinste gemeinsame Vielfache von Brüchen ausrechnen lässt:

$$\operatorname{kgV}\left(\frac{a}{b}, \frac{c}{d}\right) = \frac{ac}{\operatorname{ggT}(ad, bc)} \quad \operatorname{mit} \quad a, b, c, d \in \mathbb{N}^*$$
 (34)

Aufgabe 31. Mit dem euklidischen Algorithmus lässt sich der größte gemeinsame Teiler zweier natürlicher Zahlen berechnen:

- 1. Sortierung: Die größere Zahl sei m, die kleinere n.
- 2. Abbruch, falls m = n (= ggT).
- 3. Austausch von m durch die Differenz d = m n. Gehe zu Schritt 1.

Beispiel: ggT(168, 63) = ggT(105, 63) = ggT(63, 42) = ggT(42, 21) = 21

Schreiben Sie ein Programm, um den ggT der folgende Zahlenpaare zu ermitteln:

- a) 546 und 1764
- b) 10000001 und 100001

Aufgabe 32. Gesucht ist der größte gemeinsame Teiler dieser Zahlenpaare:

- a) 9 283 479 und 2 089 349 234 720 389 479
- b) $10\,000\,000\,008\,200\,000\,001\,197$ und $10\,000\,000\,002\,200\,000\,000\,057$

Der klassische Algorithmus von Euklid stößt bei großen Zahlen an seine Grenzen, weil zu viele Rechenoperationen erforderlich sind. Zum Glück gibt es eine "moderne" Variante: eine kleine Änderung mit großer Wirkung. Wie könnte diese Optimierung aussehen?

Aufgabe 33. Der französische Mathematiker Pierre de Fermat hat im Jahr 1637 die Vermutung aufgestellt, dass alle Zahlen

$$F_n = 2^{(2^n)} + 1 \quad \text{mit} \quad n \in \mathbb{N} = \{0, 1, 2, \dots\}$$
 (35)

Primzahlen sind. Erst im Jahre 1732 konnte der Schweizer Mathematiker Leonhard Euler ein Gegenbeispiel präsentieren, welches es von Ihnen zu finden gilt.

1.6 Gleichungen

Aufgabe 34. Leiten Sie die pq-Formel her, mit der sich die quadratische Gleichung

$$x^2 + px + q = 0 (36)$$

lösen lässt:

$$x_{1,2} = -\frac{p}{2} \pm \sqrt{\left(\frac{p}{2}\right)^2 - q} \tag{37}$$

Wie viele Lösungen können auftreten?

Aufgabe 35. Gegeben sei eine quadratische Parabel in der Standardform:

$$y = ax^2 + bx + c \quad \text{mit} \quad a \neq 0 \tag{38}$$

Um die Nullstellen mittels pq-Formel berechnen zu können, muss durch den Streckfaktor a geteilt werden. Alternativ kann die abc-Formel

$$x_{1,2} = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \tag{39}$$

benutzt werden. Der Begriff Mitternachtsformel ist ebenfalls gebräuchlich — wenn Sie um Mitternacht geweckt werden, müssen Sie diese Formel parat haben.

Leiten Sie die abc-Formel her.

Aufgabe 36. Gegeben sei eine Parabel in der Produktform:

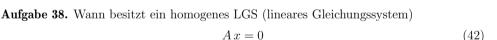
$$y = a(x - x_1)(x - x_2) \tag{40}$$

Man überprüfe, dass das Einsetzen der Nullstellen (39) auf die Standardform (38) führt.

Aufgabe 37. Geben Sie die Parameter x_0 und y_0 der Scheitelpunktsform

als Funktion der Nullstellen x_1 und x_2 an.

$$y = a(x - x_0)^2 + y_0 (41)$$



unendlich viele Lösungen, und wie sieht die Alternative aus? Führen Sie den Beweis exemplarisch anhand eines 2×2 -Gleichungssystems.

Aufgabe 39* Zeigen Sie für das Beispiel eines 2×2 -Gleichungssystems, dass bei einem inhomogenen LGS

$$\underline{A}\,\underline{x} = \underline{r} \tag{43}$$

drei Fälle auftreten können:

- a) genau eine Lösung,
- b) keine Lösung,
- c) unendlich viele Lösungen.

Aufgabe 40. Warum muss bei Wurzelgleichungen immer eine Probe gemacht werden?

